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Nonlinear evolution of the elliptical instability:
an example of inertial wave breakdown
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(Received 22 March 1999 and in revised form 30 April 1999)

A direct numerical simulation is presented of an elliptical instability observed in
the laboratory within an elliptically distorted, rapidly rotating, fluid-filled cylinder
(Malkus 1989). Generically, the instability manifests itself as the pairwise resonance
of two different inertial modes with the underlying elliptical flow. We study in
detail the simplest ‘subharmonic’ form of the instability where the waves are a
complex conjugate pair and which at weakly supercritical elliptical distortion should
ultimately saturate at some finite amplitude (Waleffe 1989; Kerswell 1992). Such
states have yet to be experimentally identified since the flow invariably breaks down
to small-scale disorder. Evidence is presented here to support the argument that such
weakly nonlinear states are never seen because they are either unstable to secondary
instabilities at observable amplitudes or neighbouring competitor elliptical instabilities
grow to ultimately disrupt them. The former scenario confirms earlier work (Kerswell
1999) which highlights the generic instability of inertial waves even at very small
amplitudes. The latter represents a first numerical demonstration of two competing
elliptical instabilities co-existing in a bounded system.

1. Introduction
It is now well known that a large class of two-dimensional, inviscid flows with

patches of elliptical streamlines are subject to strong three-dimensional instabilities
(Gledzer et al. 1974, 1975; Vladimirov & Tarasov 1985; Vladimirov & Vostretsov 1986;
Pierrehumbert 1986; Bayly 1986; Landman & Saffman 1987; Craik 1989; Malkus
1989; Waleffe 1990; Gledzer & Ponomarev 1992). Attention has naturally focused on
this ‘elliptical’ instability as a likely mechanism by which large-scale, two-dimensional
coherent structures may break down into small-scale, three-dimensional motions in
the transition to turbulence of shear flows (Orszag & Patera 1983; Bayly, Orszag &
Herbert 1988; Malkus & Waleffe 1991; Caulfield & Peltier 1999 for a discussion in
the mixing layer context). Laboratory experiments of a strained vortex (Malkus 1989)
have demonstrated that this elliptical instability ultimately does lead to small-scale
disorder as have recent numerical simulations starting from a periodic array of such
vortices (Lundgren & Mansour 1996). However, theoretical understanding of this
process at present extends no further than the initial instability mechanism which is
still being mapped out (Moffatt, Kida & Ohkitani 1994; Bayly, Holm & Lifschitz
1996; Jimenez, Moffatt & Vasco 1996).

The purpose of this paper is to make progress in understanding the secondary,
nonlinear phases of the elliptical instability which exist beyond the initial stage of
exponential growth. We focus our attention on Malkus’s (1989) clever experiments in
which he created an elliptical flow by rotating a water-filled flexible cylinder between
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two stationary rollers. The elliptical instability manifests itself as the pairwise reso-
nance of two inertial waves coupled by the underlying ‘elliptical wave’ of deformation
in the basic flow. The unstable waves are seen to grow for some time and then
dramatically collapse into small-scale disorder. This appears to be a classic example
of inertial wave breakdown observed in many other systems where inertial waves are
driven to finite amplitude (e.g. Malkus 1968; McEwan 1970; Manasseh 1992, 1994,
1996; Kobine 1995, 1996) and represents a fundamental problem in rapidly rotating
fluids. Malkus’s experiments seem a particularly clean example of this phenomenon
christened ‘resonant collapse’ by McEwan (1970).

The approach taken here is one of direct numerical simulation (DNS) specifically
aimed at investigating the slightly supercritical regime where weakly nonlinear analysis
should be applicable. Such analysis already carried out for the experimental set-up
of rigid top and bottom boundaries (Waleffe 1989; Kerswell 1992, unpublished)
predicts the existence of small-amplitude saturated states. However, one of the more
puzzling aspects of Malkus’s experiments is the invariable collapse of the growing
inertial waves despite every effort to isolate such weakly nonlinear saturated states
(Malkus, private communication). This DNS approach also complements a recent
study highlighting the linear instability of finite-amplitude, inertial waves (Kerswell
1999) which specifically considers the growing waves seen by Malkus.

Working within Malkus’s elliptical cylinder geometry necessarily requires a new
Navier–Stokes pseudospectral solver to be developed. We have based this solver on
Marcus’s time-splitting algorithm which he used with success to examine Taylor–
Couette flow (Marcus 1984a, b). Our non-standard geometry is handled by working
in a non-orthogonal elliptico-polar coordinate system which effectively converts the
elliptical cylinder into a circular cylinder but at the inevitable expense of producing
more complicated equations of motion. These equations, however, possess highly
desirable features (discussed below) which lead to considerable numerical efficiency
compared with other equations produced by more conventional choices of orthogonal
coordinate systems such as elliptical cylindrical coordinates, as noted elsewhere (Ker-
swell & Davey 1996). Once within a standard circular system, we employ Marcus’s
time-splitting algorithm (with Green’s function correction) to step the primitive vari-
ables forward in time. The novelty of approach taken here for this geometry makes
this work of independent numerical interest.

This paper has two main aims: to establish the existence of a saturated nonlinear
state for the elliptical instability (under suitably restricted conditions), and then to
examine its stability. The general hypothesis for which we seek evidence here is that
the saturated state suggested by weakly nonlinear analyses is never actually seen
because secondary instabilities of the growing primary inertial waves preempt such
equilibration. This would then reiterate the conclusion of recent more speculative
work (Kerswell 1999).

The plan of the paper is as follows. Section 2 formulates the problem and introduces
the elliptico-polar coordinate system. Section 3 describes how the governing Navier–
Stokes equations in this system are stepped forward in time using Marcus’s algorithm.
A complementary eigenvalue code which examines the linear stability of the elliptical
basic state is also presented here. Section 4 collects together the results in five
subsections. The first two discuss the elliptical instability mechanism and the results
from both the eigenvalue code and a linearized version of the time-stepping code.
The emphasis here is to extend the asymptotic linear stability analysis of Waleffe
(1989) (valid in the rapid-rotation limit) to finite elliptical distortion, rotation and
hence viscosity as appropriate for Malkus’s experiments and to test the time-stepping
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code for accuracy. The third and fourth subsections present the first nonlinear results
concerning equilibration of the elliptical instability and compare them with the
predictions of weakly nonlinear analysis for the present case of stress-free top and
bottom boundaries which is described in the Appendix. A final fifth subsection
addresses secondary stability issues and demonstrates how other competitor elliptical
instabilities can become important. Section 5 brings together the various results
presented in the paper, discusses their implications and gives some final conclusions.

2. Formulation
The fluid flow under consideration is that produced within a rotating cylinder whose

flexible walls are deflected radially inwards as it is rotated by two diametrically op-
posed rollers aligned with the cylinder’s rotation axis and stationary in the laboratory
frame (Malkus 1989). This gives rise to an elliptical cylinder of cross-section

x2

1 + β
+

y2

1− β = 1 (2.1)

(non-dimensionalized by the undistorted cylindrical radius, S†) fixed in the laboratory
frame but whose walls are rotating. The ellipticity parameter β measures the elliptical
distortion through the cross-section aspect ratio

A =

√
1 + β

1− β . (2.2)

An exact solution to the Navier–Stokes equations which satisfies all the relevant
boundary conditions at least approximately for β � 1 is the basic elliptical flow

U = −
√

1 + β

1− β y x̂+

√
1− β
1 + β

x ŷ (2.3)

(non-dimensionalized by the magnitude of the cylinder’s angular velocity Ω and the
cylinder’s radius S). Malkus’s cylinder has a rigid circular base and a flexible top
to accommodate the imposed elliptical distortion. This in general introduces O(β)
mismatches in the imposed tangential boundary velocity field and that of the solution
(2.3). Additionally, since the speed of the cylinder wall is constant whereas that of
(2.3) varies as

√
1− β cos 2φ (x =

√
1 + β cosφ, y =

√
1− β sinφ), there is also a

small O(β) discrepancy in the tangential velocity at the sidewalls. Asymptotically in
the rapid rotation limit, we can expect both these discrepancies to have an O(βE1/2)
(E is the Ekman number defined below) and hence negligible effect on the interior
flow. Certainly in the experiments there is every reason to suspect that the flow (2.3) is
realized (along with weak boundary layers) at low values of the elliptical distortion β
(Malkus, private communication) and we assume this henceforth through the imposed
boundary conditions used below.

We decompose the total velocity and pressure fields into basic flow and modification
components as follows:

utotal = U + u, ptotal = P + p, (2.4)

† Technically, the circumference of the cylinder remains constant under distortion in the lab-

oratory so that the undistorted cylinder radius is S
√

1− β2 but since β � 1 this distinction is
unimportant in what follows.
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where P is the pressure field associated with the basic elliptical flow (2.3). The
governing Navier–Stokes equations are then

∂u

∂t
+U · ∇u+ u · ∇U + u · ∇u+ ∇p = E∇2u (2.5)

with the condition for fluid incompressibility

∇ · u = 0. (2.6)

The Ekman number E = ν/ΩS2 is the usual non-dimensional measure of the fluid’s
kinematic viscosity ν. Boundary conditions imposed are non-slip on the sidewalls,

u = 0 on
x2

1 + β
+

y2

1− β = 1, (2.7)

and stress-free on the top (z = d) and bottom (z = 0) surfaces,

u · ẑ = 0, ẑ · ∇(ẑ×u) = 0 on z = 0, d. (2.8)

The latter represent an undesirable but necessary compromise since Malkus’s experi-
ments have rigid boundaries top and bottom. Numerically resolving Ekman boundary
layers in both radial and axial directions at experimental Ekman numbers of O(10−4)
for a number of inertial waves simultaneously remains prohibitively expensive with
current computational facilities (Kerswell & Barenghi 1995). Hence we adopt the
least dangerous simplification by relaxing the boundary conditions on the horizontal
surfaces as in Kerswell (1999). The problem is then to identify the preferred fluid
response to given values of the elliptical distortion β and Ekman number E in a
cylinder of height-to-radius ratio d.

In order to work efficiently with spectral representations of the physical fields,
the elliptical boundary must be describable by one of the spatial coordinates being
constant. With this in mind, a natural transformation to make is to orthogonal elliptic
cylindrical coordinates (ζ, η, z) where

x =

√
2 cosh ζ√
cosh 2ζ0

cos η, y =

√
2 sinh ζ√
cosh 2ζ0

sin η, (2.9)

with

0 6 η < 2π, 0 6 ζ 6 ζ0 =
1

2
log

(
A+ 1

A− 1

)
so that ζ = ζ0 defines the sidewall. However, this coordinate system is problematic
for two reasons, both of which essentially stem from the fact that, apart from at
the boundary, it does not reflect the structure of the basic flow. Curves of constant
ζ are confocal ellipses rather than the similar ellipses of the basic flow streamlines
and collapse down as ζ → 0 to a singular line segment joining the foci on the major
axis. This inevitably leads to a degradation in any numerical scheme based on this
coordinate representation. Secondly and more seriously, any discretization matrices
based on spectral expansions of the physical variables will be dense matrices due to
the awkward form of the transformation. This severely limits the range of parameter
space which can be explored computationally.

A far more suitable system proves to be the non-orthogonal elliptico-polar coordi-
nates (s, φ, z) defined by

x = s
√

1 + β cosφ, y = s
√

1− β sinφ (2.10)
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which maps the elliptical streamlines of (2.3) into circles. Bayly was the first to realize
the relevance of this coordinate system to elliptical flow, stimulating the hydrodynamic
analysis of a distorted cylinder by Waleffe (1989); Vladimirov & Vostretsov (1986)
used this coordinate system independently in the Russian literature. The base vectors

s̃ =
√

1 + β cosφ x̂+
√

1− β sinφ ŷ,

φ̃ = −√1 + β sinφ x̂+
√

1− β cosφ ŷ,

}
(2.11)

are not orthogonal and are left unnormalized so that the ‘cylindrical-polar’ expressions

∂s̃

∂φ
= φ̃,

∂φ̃

∂φ
= −s̃ (2.12)

hold. As a consequence the advective derivative and divergence operators are then
identical to the familiar ‘cylindrical-polar’ expressions:

u · ∇ = ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z
= u

∂

∂s
+
v

s

∂

∂φ
+ w

∂

∂z
, (2.13)

∇ · u =
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
=

1

s

∂(su)

∂s
+

1

s

∂v

∂φ
+
∂w

∂z
, (2.14)

where the new velocity components u, v and w are defined as follows:

u = uxx̂+ uyŷ + uz ẑ = us̃+ vφ̃+ wẑ. (2.15)

The elliptical boundary is now simply s = 1 and the basic state (2.3) transforms to

U = sφ̃, (2.16)

which is now axisymmetric because all the azimuthal (elliptical) variation is hidden
in φ̃. The price paid for this simplification however is the increased complexity of the
Navier–Stokes equations caused by the non-orthogonality of the transformation. The
complementary set of vectors

l̃ =

[
cosφ√
1 + β

,
sinφ√
1− β , 0

]
, ñ =

[− sinφ√
1 + β

,
cosφ√
1− β , 0

]
, ẑ, (2.17)

chosen so that for example l̃ · s̃ = 1, l̃ · φ̃ = 0 and l̃ · ẑ = 0, are used to project out three
independent components of the momentum equation. These components are exactly

∂u

∂t
− 2v +

∂u

∂φ
+ u · ∇u− v2

s
+

1− β cos 2φ

1− β2

∂p

∂s
+
β sin 2φ

1− β2

1

s

∂p

∂φ

= E

{
∇2
u− 1 + β cos 2φ

1− β2

1

s2

[
2
∂v

∂φ
+ u

]
− 2β sin 2φ

1− β2

[
1

s

∂v

∂s
− v

s2

]}
, (2.18)

∂v

∂t
+ 2u+

∂v

∂φ
+ u · ∇v − uv

s
+
β sin 2φ

1− β2

∂p

∂s
+

1 + β cos 2φ

1− β2

1

s

∂p

∂φ

= E

{
∇2
v +

1 + β cos 2φ

1− β2

1

s2

[
2
∂u

∂φ
− v
]

+
2β sin 2φ

1− β2

[
1

s

∂u

∂s
− u

s2

]}
(2.19)

and
∂w

∂t
+
∂w

∂φ
+ u · ∇w +

∂p

∂z
= E∇2

w (2.20)
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with crucially

∇ · u = 0 (2.21)

preserved and where

∇2 ≡ 1− β cos 2φ

1− β2

∂2

∂s2
+

1 + β cos 2φ

1− β2

1

s

∂

∂s
+

1 + β cos 2φ

1− β2

1

s2
∂2

∂φ2

+
2β sin 2φ

1− β2

1

s

∂2

∂s∂φ
− 2β sin 2φ

1− β2

1

s2
∂

∂φ
+

∂2

∂z2
.

The boundary conditions are non-slip on the sides,

u = 0 at s = 1, (2.22)

and stress-free conditions on the top and bottom,

∂u

∂z
=
∂v

∂z
= w = 0 on z = 0, d. (2.23)

Due to the complexity of the equations (2.18)–(2.20), we have chosen to work
with the primitive variables, u, v, w and p, of the system. The crucial feature of these
equations and ultimately of the coordinate system used is that φ only explicitly appears
as sin 2φ or cos 2φ. This means that if we expand the primitive variables, u, v, w and p,
using Fourier modes in φ, only adjacent even Fourier modes and separately adjacent
odd modes will interact through the linear time-stepping operator. (Of course, the
nonlinear part of the time-stepping operator, the advective nonlinearity, mixes all the
modes up as ever.) This simple coupling in the linear part of the equations allows
crucial computational savings to be made which are discussed in the next section. The
drawback of time-stepping the Navier–Stokes equations directly is maintaining the
fluid’s incompressibility or, put another way, time-stepping the pressure. A popular
alternative to this is to build incompressibility implicity into the flow representation
by using a toroidal-poloidal decomposition for example. This, however, requires
taking successive curls of the Navier–Stokes equations and hence leads to even more
unwieldy expressions. Moreover, storage becomes less efficient (matrix bandwidth
increases – see below) and the code less numerically robust since higher spatial
derivatives necessarily appear.

3. Numerics
3.1. The time-stepping code

We use Marcus’s pseudospectral time-splitting algorithm to integrate our governing
equations forward in time. A collocation approach is used in s and Galerkin projection
over φ and z. His algorithm has four stages. The first stage steps the advective and
nonlinear terms explicitly using the second-order Adams–Bashforth method. The
second updates the pressure field by solving a Poisson equation and the third time-
steps the viscous term implicitly using Backward Euler. Finally, a corrective fourth
stage applies the full boundary conditions using a Green’s function method. Marcus
(1984a) gives a detailed account of these various stages so here we discuss only the
adjustments made for our particular application.

The first and main modification is forced by the reduced symmetry group of
an elliptical cylinder compared to a circular cylinder. The rotational symmetry of



Nonlinear evolution of the elliptical instability 79

Marcus’s cylindrical annulus meant that he could treat each Fourier mode in φ
(see (3.1)) separately except for when the advective nonlinear term is considered.
Put another way, all his matrix calculations involved block diagonal matrices so
each block could be considered in isolation. Our system of flow within an elliptical
cylinder only has a Z2 symmetry group in its cross-section (generated by reflecting
in both major and minor axes of the ellipse) rather than the S1 symmetry group
of the axisymmetric cylinder. Consequently, a typical Fourier mode m is coupled
through O(β) terms to its nearest neighbours m ± 2. This means that for a given
axial wavenumber, we must consider all odd m modes together and all even m modes
together. In other words, our matrices are partitioned into all odd and all even m
and each is now block tridiagonal. Algorithms exist to exploit this structure but still
the computational effort called for is substantially higher than the fully decoupled
situation.

Secondly, we do not have a central core in our cylinder so that the coordinate axis is
part of the solution domain. This can lead to numerical problems unless specific efforts
are made to desensitize the code to this artificial singularity. We achieve this here
by exploiting the representation degeneracy of cylindrical coordinates in which the
points (−s, φ± π, z) and (s, φ, z) are exactly equivalent. This means that each velocity
component and scalar pressure function has a definite parity in s determined by
whether its corresponding azimuthal wavenumber m is even or odd (see the appendix
of Kerswell & Davey 1996). Building the appropriate radial parity into the spectral
representation of each field variable not only saves on storage but automatically
instils the correct limiting behaviour near the axis. Computationally, we consider the
domain {−1 6 s 6 1, 0 6 φ < π } rather than viewing the interior of the pipe as the
region { 0 6 s 6 1, −π 6 φ < π }. The solution in −1 6 s < 0 can be constructed
from that in 0 < s 6 1 through the known symmetries and so we need only collocate
the equations over the positive zeros of T2N(s) and impose boundary conditions at
s = 1. Most importantly, this means that the collocation points are at their sparsest
near the axis –O(1/2N) spacing – and at their densest –O(1/4N2) spacing – near the
sidewall where Ekman boundary layers must be resolved.

The velocity and pressure fields are represented in the form u
v
w
p

 =

L∑
l=0

N∑
n=1


M∑

m=−M,m odd


ulmn(t)Θ2n(s) cos lαz

vlmn(t)Θ2n(s) cos lαz

wlmn(t)Θ2n+1(s) sin lαz

plmn(t)T2n−1(s) cos lαz

 eimφ

+

M∑
m=−M,m even


ulmn(t)Θ2n+1(s) cos lαz

vlmn(t)Θ2n+1(s) cos lαz

wlmn(t)Θ2n(s) sin lαz

plmn(t)T2n−2(s) cos lαz

 eimφ

 (3.1)

where ul−mn = u∗lmn and pl−mn = p∗lmn so that the total velocity and pressure are real
and α = π/d. Here Tn(s) = cos (n cos−1 s) is the nth Chebyshev Polynomial and

Θn(s) ≡ Tn(s)− Tn−2(s) (3.2)

so that the boundary conditions are built into the spectral functions. The nonlinear
term is calculated in physical space and dealiased.
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3.2. Performance

Theoretically, the numerical error introduced by the time-stepping code over one
revolution is O(E∆t, (∆t)2) (Marcus 1984a) where ∆t is the time step. This is confirmed
below (see § 4.2) and most importantly stays at this level even over many revolutions.
For the Ekman numbers of interest, 2.5 × 10−4 6 E 6 10−2, the code is essentially
second order in time since 10−2 6 ∆t (the period of rotation is 2π in our non-
dimensional units). Experience indicates that the code can fail for three distinct
reasons and always in the same fashion. First, the radial truncation can be too small
for the time step and Ekman number, the crucial combination being the small number
E∆t which appears in the viscous ‘fractional’ step. Secondly, the time step ∆t can be
too large so that the numerical errors swamp the integration. Thirdly, the velocity field
can become too large for the time step. All lead to blow up of the fluid’s divergence
which is therefore constantly monitored throughout the time integration. (The precise
descriptor we have used is the following:

4∑
j=0

5∑
k=0

∣∣∣∣1s ∂(su)

∂s
+

1

s

∂v

∂φ
+
∂w

∂z

∣∣∣∣∣∣∣∣1s ∂(su)

∂s

∣∣∣∣+

∣∣∣∣1s ∂v∂φ
∣∣∣∣+

∣∣∣∣∂w∂z
∣∣∣∣ , (3.3)

where the indices (j, k) label 30 sampling points (s = 1
2
, φ = 2πj/5, z = kd/10). This

number is found to give a quick global measure of the flow solution’s divergence and
remains O(10−12) in a healthy run.)

The radial truncation required for a typical time step of ∆t = 0.05 can vary from
N = 35 at E = 10−2 to N = 90 at E = 2.5 × 10−4. This is way above that required
for acceptable accuracy and is entirely dictated by the stability requirements of the
viscous step since the operator (1− E∆t∇2) must be inverted there. This represents a
serious bottleneck in the algorithm which prevents studying Ekman numbers much
below E = 2.5× 10−4.

The existence of a threshold flow amplitude (for a given time step) above which the
code breaks down is reminiscent of the Courant–Friedrichs–Lewy (CFL) condition.
Technically, this is not directly applicable here because we employ spectral methods
and so our numerical domain is in fact global. However, pursuing its general spirit
nevertheless yields sensible numbers: the CFL condition takes the form

|v|∆t
∆s
6 1 (3.4)

and taking ∆t = 0.05 and ∆s = 1/N, the maximal spacing near the axis, |v| 6 0.22
for numerical stability at N = 90.

For the runs performed here at β 6 0.1 and the elliptical instabilities studied, the
azimuthal truncation M = 4 proves more than sufficient. Axial truncations of L = 4
and L = 8 are used to consider saturation and stability issues respectively. Typical
storage and run times are as follows. For a truncation (N,M,L) = (60, 4, 4) which
requires 69 MB, a single revolution takes 4.9 mins on a 200 Mhz Sun Ultrasparc,
whereas (90, 4, 4) takes 151 MB and 10.2 mins, and (90, 4, 8) 283 MB and 22.2 mins, all
using ∆t = 0.05.

3.3. Eigenvalue code

An eigenvalue code was also produced to examine the linear stability of the underlying
elliptical flow as a necessary preliminary to a time-stepping approach. This stability
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code closely resembles that written to investigate the linear stability of axial flow in
an elliptical pipe (Kerswell & Davey 1996). The system there possesses a Z2 × Z2

symmetry group generated by reflections in the cross-sectional major and minor
axes. This partitions the possible disturbance space into four subspaces which may
be then efficiently searched for instability (see expressions (3.1)–(3.4) of Kerswell &
Davey 1996). Here, due to the different basic elliptical flow, the symmetry group is
only Z2 generated by the composite transformation of reflections in both axes. The
disturbance space then only divides in two: an odd and an even space where the
disturbance fields take the following respective forms: u

v
w
p

 =

N∑
n=1

M∑
m=−M,m odd


umnΘ2n(s)

vmnΘ2n(s)

wmnΘ2n+1(s)

pmnT2n−1(s)

 eimφ+iαz+(iλ+σ)t, (3.5)

 u
v
w
p

 =

N∑
n=1

M∑
m=−M,m even


umnΘ2n+1(s)

vmnΘ2n+1(s)

wmnΘ2n(s)

pmnT2n−2(s)

 eimφ+iαz+(iλ+σ)t. (3.6)

As noted before, these representations implicitly satisfy all boundary conditions.

4. Results
4.1. Elliptical instability

The elliptical instability mechanism is most clearly understood by ignoring viscosity
in equations (2.18)–(2.20). Linearizing about the basic elliptical flow and moving into
the rotating frame leads to the equation

∂u

∂t
+ 2k̂×u+ ∇p = 1

2
β
[
e2i(φ+t)N∇p+ e−2i(φ+t)N∗∇p] (4.1)

where

N =

 1 i 0
i −1 0
0 0 0

 , ∇ = s̃
∂

∂s
+ φ̃

1

s

∂

∂φ
+ ẑ

∂

∂z
(4.2)

and ∗ denotes complex conjugation. When β = 0, (4.1) reduces to the inertial wave
problem for which a complete set of normal modes or inertial waves are known (see
Greenspan 1968). For 0 < β � 1, the right-hand side can be viewed as a small coupling
term between these neutral inertial modes (Waleffe 1989). The underlying elliptical
basic flow is essentially a wave of amplitude β with axial wavenumber 0, azimuthal
wavenumber 2 and frequency 2 in the rotating frame. The coupling term can therefore
link inertial waves whose frequencies differ by 2, azimuthal wavenumbers differ by
2 and whose axial wavenumbers are equal – familiar triad resonance conditions – to
produce resonant growth of the two inertial waves.

Generically, two candidate inertial waves satisfying the axial and azimuthal wave-
number conditions will not be in resonance for a given geometry because the frequency
condition is violated. However at certain ‘resonant’ cylinder heights, their frequencies
can be brought into the required relationship and resonance achieved. The effect of
reinstating viscosity is to smear out slightly the precise resonant frequency condition
so that it only needs to be approximately satisfied (where ‘approximately’ depends on
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Figure 1. Plot of βcrit against E1/2 for the m = (−1, 1) elliptical instability. The solid line shows the
results from the eigenvalue code and the dashed line is the leading asymptotic result βcrit = 1.65E1/2.
The dotted line is a modified asymptotic result based upon the more accurate decay rate expression
s1 = −0.6189(1 + i)− (k2 + α2)E1/2 with k = 2.7346.
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Figure 2. Plot of βcrit against E1/2 for the m = (0, 2) elliptical instability. The solid line shows the
results from the eigenvalue code and the dotted line is the leading asymptotic result βcrit = 1.48E1/2.
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the size of the viscosity – see below) and to produce a threshold elliptical distortion
βcrit > 0 only above which the elliptical instability is manifest. In this paper we choose
to focus upon two particular ‘resonant’ geometries: d = 3.9796 in which an m = 1
inertial wave resonates with its m = −1 complex conjugate, and d = 2.7009 where an
m = 0 wave resonates with an m = 2 wave. These instabilities have been the subject of
extensive experimental investigation by Malkus. The first represents a typical example
of the special subharmonic class of elliptical instability in which an inertial wave
interacts with its complex conjugate and therefore offers the simplest situation for
theoretical analysis. The second is a generic example of two different inertial waves
interacting.

The threshold elliptical distortion, βcrit, for the onset of the m = −1 and m = 1
(hereafter m = (−1, 1)) elliptical instability at d = 3.9796 as a function of the Ekman
number is plotted in figure 1. Here the results of eigenvalue calculations for finite E
are compared with the leading-order asymptotic result βcrit = 1.65E1/2 valid as E → 0
(see Appendix equation (A 16), C1 = 0.5312, ∆ = E1/2sI1, s1 = −0.6189(1 + i)). Figure
2 is the equivalent plot for the m = 0 and m = 2 (hereafter m = (0, 2)) elliptical
instability at d = 2.7009 where the leading asymptotic result is βcrit = 1.48E1/2. In
both cases, the true βcrit quickly exceeds the leading-order asymptotic estimates which
are based on just the first-order viscous decay rates of the inertial waves due to their
boundary layers. Incorporating the next-order contribution due to interior dissipation
(through the use of the more accurate expression s1 = −0.6189(1 + i)− (k2 + α2)E1/2

where k = 2.7346) in the m = (−1, 1) case gives much better correspondence: see
figure 1.

4.2. Testing: linear code

To test the main aspects of the time-stepping code, the results of time-stepping the
linearized Navier–Stokes equations were compared with the results of the eigenvalue
code for the two elliptical instabilities of interest here (m = (−1, 1) at d = 3.9796 and
m = (0, 2) at d = 2.7009). The unstable eigenfunction was used as the initial condition
for the time-stepping code in each case and then an estimate of the growth rate made
based upon how the energy of the eigenfunction increased with time. Figure 3 shows
how the fractional error in these growth rate estimates (as compared to the true
eigenvalues) vary with choice of time step over the time period of 1 revolution. This
figure contains information from both limiting Ekman numbers of E = 2.5 × 10−4

and E = 10−2 for each elliptical instability.
The curves are all consistent with the expected time accuracy of the code which

is O(E∆t, (∆t)2). When E = 10−2, the dominant time-step error appears to be the
O(E∆t) error in the viscous time step: this is reflected in the straight line curves for
both m = (−1, 1) and m = (0, 2). For E = 2.5 × 10−4, the dominant error should
be the O((∆t)2) in the advective step and this is seen clearly in the m = (0, 2) curve.
The reason that this is not also seen in the m = (−1, 1) curve is that this elliptical
instability is steady in the laboratory frame in which the numerical code works (in
contrast the m = (0, 2) instability has a frequency λ ≈ 1). The advective time-step
errors are then presumably much smaller because of this and we see only O(E∆t)
behaviour. This steadiness, of course, makes this instability particularly amenable to
numerical modelling. Figure 4 demonstrates that these time-step errors stabilize over
many revolutions, which is especially important as we typically integrate over many
hundreds of revolutions.

Based upon these results, the time steps used to study the m = (−1, 1) and m = (0, 2)
instabilities are ∆t = 0.05 and ∆t = 0.025 respectively. Certainly in the m = (−1, 1)
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Figure 3. Plot of fractional error, ∆σ/σ, in the growth rate as calculated by time-stepping over 1
revolution verses the time step ∆t (1 revolution=2π in non-dimensional units). The (top) dashed and
dotted curves correspond to E = 2.5×10−4 and E = 10−2 respectively for the m = (−1, 1) instability.
The solid and long-dashed curves are the E = 2.5× 10−4 and E = 10−2 versions for the m = (0, 2)
instability. The elliptical distortion is β = 0.1 at E = 10−2 and β = 0.035 at E = 2.5× 10−4.
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Figure 4. Plot of fractional error, ∆σ/σ, against n, the number of revolutions (t = 2πn in
non-dimensional units). The (top) solid line is the m = (0, 2) instability at β = 0.035, E = 2.5× 10−4,
∆t = 0.025. The (lowest) long-dashed line is the m = (0, 2) instability at β = 0.1, E = 10−2, ∆t = 0.025.
The dashed (second down) line is the m = (−1, 1) instability at β = 0.035, E = 2.5×10−4, ∆t = 0.05.
The dotted (second up) line is the m = (−1, 1) instability at β = 0.1, E = 10−2, ∆t = 0.05.
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case, a larger time step seems acceptable and this is true in this situation. However,
when nonlinearity is reinstated a large time step seems to restrict how far in amplitude
the disturbance can be followed and experience indicated that ∆t = 0.05 was the best
choice.

4.3. Testing: nonlinear code

Marcus (1984a) tested his full nonlinear code by comparing the kinetic energy at a
given time calculated from the time-stepped velocity with that determined by directly
time-integrating the kinetic energy evolution equation. We have performed similar
tests here. In elliptico-polar coordinates, the total kinetic energy is

K =
1

2

〈
1 + β

1− β y
2 +

1− β
1 + β

x2

〉
+
〈
s{v(1− β cos 2φ)− uβ sin 2φ}〉

+ 1
2

〈
u2 + v2 + w2 + β(u2 − v2) cos 2φ− 2βuv sin 2φ

〉
, (4.3)

where the volume integral is defined as follows:〈 〉
:=

∫ d
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∫ 1

0
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The first term on the right-hand side of (4.3) is the basic-state energy, the second
the interaction contribution and the third commonly referred to as the disturbance
energy. The kinetic energy evolution equation is
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Figure 5. The x-component of the vorticity, ωx (evaluated at s = 0.5, φ = 0 and z = d/4) plotted
against the number of revolutions n for the m = (−1, 1) instability at β = 0.033, d = 3.9796 and
E = 2.5 × 10−4 (the basic vorticity is ω = 2ẑ). The initial condition is the unstable eigenfunction
with amplitude 10−4.

A comparison of the energies calculated via (4.3) and (4.5) after 10 revolutions
typically displays an error of 1 part in 104 which is consistent with Marcus’s findings.

4.4. Saturation

In both the m = (−1, 1) and m = (0, 2) instability cases, saturated states were eventually
obtained by time-stepping the equations using quite strict modal truncations in m
and l. The truncations M = 4 and L = 4 proved more than sufficient to capture the
equilibrated form of the two instabilities. Figures 5 and 6 give typical time evolutions
to saturation for the m = (−1, 1) and m = (0, 2) elliptical instabilities respectively. In
each case, the x-component of the vorticity, ωx, evaluated at (s, φ, z) = ( 1

2
, 0, 1

4
d) is

chosen to indicate the disturbance amplitude (the underlying vorticity is ω = 2ẑ). In
the m = (−1, 1) case, ωx always seems to show a small overshoot before settling down
to a slightly lower saturated value whereas the amplitude envelope of ωx evolves
monotonically to a limit in the m = (0, 2) case. Figure 7(a–c) shows the saturated
velocity field reached in figure 5. The most striking feature of the total velocity field is
the wavy rotation axis which is clearly seen in the laboratory (see figure 1 of Kerswell
1999).

The rate at which an elliptical instability can extract energy from the underlying
flow depends strongly on its orientation or phase relative to the imposed ellipticity.
As a result, the saturation process is quite intricate because the growing instability
equilibrates through phase-shifting as well as the usual frequency-detuning and damp-
ing mechanisms. Furthermore, our ‘simplifying’ stress-free top and bottom boundary
conditions actually complicate matters here because the mean flow is only gener-
ated at second order by the growing instability. In the experimental set-up where
all boundary conditions are non-slip, nonlinear horizontal Ekman boundary layers
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Figure 6. The amplitude envelope of the oscillating x-component of the vorticity, ωx(0.5, 0, d/4),
plotted against the number of revolutions n for the m = (0, 2) instability at β = 0.037, d = 2.7009
and E = 2.5× 10−4. The initial condition is the unstable eigenfunction with amplitude 10−3.

ensure that frictional damping from an O(ε2) mean flow can balance the appropriate
leading nonlinear terms produced by an O(ε) primary flow. With these layers absent,
only the internal friction from an O(ε2/E1/2) mean flow is available for this task.
For the elliptically distorted system studied here, in fact, no such large mean flow
is required since these leading nonlinear terms are found to vanish identically in the
lowest-order phase direction. This necessitates working to second order in the mean
flow to capture the leading dynamic balance. A number of interesting features (a
second-order linear Ekman boundary layer and a nonlinear Ekman boundary layer
amongst other things) arise in the subsequent analysis which is somewhat involved
and therefore relegated to the Appendix. Figure 8 compares the weakly nonlinear
theoretical results with the actual numerical solutions for the m = (−1, 1) case: the
bifurcation is clearly a supercritical pitchfork. The correspondence is good consider-
ing that the analysis is based upon a double expansion in E1/2 and the inertial wave
amplitude ε with both quantities numerically small but not ‘really’ small. Saturated
numerical solutions are also obtained in the m = (0, 2) case for β > βcrit so that this
bifurcation is supercritical too.

4.5. Secondary instabilities

All the equilibrated states reached through numerical computation were essentially
weakly nonlinear states in which the initially unstable inertial modes still dominated
the velocity structure. As a result, it seemed plausible that the stability characteristics
of these dominant inertial modes should largely dictate those of the weakly nonlinear
solution. The m = (−1, 1) saturation provides a particularly appealing situation in
which to test this hypothesis since only the stability characteristics of the one inertial
wave (and its complex conjugate) need be examined. A companion paper (Kerswell
1999) reports on the linear stability of just that inertial mode as a function of its



88 D. M. Mason and R. R. Kerswell

4

3

2

1

0

–1.0 –0.5 0 0.5 1.0
s

z

(a)

(b)

Figure 7 (a, b). For caption see facing page.



Nonlinear evolution of the elliptical instability 89

(c)

Figure 7. Contour and arrow plots of the steady velocity field reached as the saturated endstate
of the m = (−1, 1) instability in figure 5 (β = 0.033, d = 3.9796 and E = 2.5 × 10−4). (a) A z, s
contour/arrow plot of the total velocity. The thick central wavy line represents the new rotation
axis of the fluid (compare with figure 1 of Kerswell 1999). The φ-plane has been chosen to show
the largest bend in this axis: here φ = 0.8762π. The numbers represent contour levels on v the
azimuthal speed which is just 1 at the sidewalls s = 1. The arrows indicate the meridional velocity
uŝ + wẑ. The longest arrow corresponds to a speed of 0.001582. (b) An s, φ slice at the equator of
the cylinder z = d/2 showing the disturbance velocity field (note that w vanishes at this z level). The
size of the longest arrow corresponds to a speed of 0.109. The dashed line indicates the meridional
slice taken in (a). (c) An s, φ slice at z = d/4 of the disturbance velocity field. Contours refer to axial
velocity w and Ekman boundary layers are clearly visible. Again the dashed line is the meridional
slice taken in (a). The longest arrow corresponds to a speed of 0.004015.

amplitude A (defined in equation (2.9) of Kerswell 1999 and equal to ε/3 where ε
is defined in the Appendix) and Ekman number E. According to this analysis at
E = 2.5 × 10−4, the inertial mode should become linearly unstable at A ≈ 0.033
to a pair of inertial modes, (m, l) = (2, 3

2
) and (3, 1

2
), which form a triad with the

underlying state (m, l) = (±1,±1) (see table 2, Kerswell 1999). The m = (−1, 1)
saturated state corresponding to β = 0.034 at E = 2.5 × 10−4 (see figure 5) has at
its heart the inertial mode (m, l) = (±1,±1) with amplitude A ≈ 0.04. The unstable
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Figure 8. A plot of amplitude ε and phase ψ0 − ψ against elliptical distortion β for the sat-
urated m = (−1, 1) elliptical instability at E = 2.5 × 10−4 and d = 3.9796. The discrete data
points are numerical results and the continuous lines weakly nonlinear theoretical predictions. The
ε, β graph is standard indicating supercritical pitchfork bifurcation. The (ψ0 − ψ), β plot is less
standard. Based upon the expansions, ψ = ψ0(E) + ε2/E1/2ψ2−1 and β = β0 + ε2β20, a straight

line ψ0 − ψ = −ψ2−1/(E
1/2β20)(β − β0) is predicted as ε → 0. (In the weakly nonlinear results

β0(E) = 0.0299 and ψ0(E) = −0.8595π have been taken.)
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Figure 9. The effect of adding the unstable (2, 3
2
)–(3, 1

2
) eigenfunction as a small perturbation

(amplitude=O(10−4)) to the saturated m = (−1, 1) state for β = 0.034 at E = 2.5 × 10−4 (time of
addition is 540 revolutions). The code truncation is (N,M,L) = (90, 4, 8) and ∆t = 0.05. The data
stop because the code eventually breaks down when the velocity amplitude gets too large.
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Figure 10. A power spectrum of the ωx data in figure 9. The modulus of the coefficients ω̂x in the
Fourier series of ωx for n > 540 are plotted (on a log10 scale) against the corresponding frequency λ.
There are three clear peaks: λ = 2.76 corresponding to the dominant secondary instability; λ = 2.27
corresponding to a subdominant secondary instability; and λ = 1.04 corresponding to a competing
m = (0, 2) elliptical instability. (The fact that ωx is not stationary but growing secularly leads to the
broadening of the frequency peaks.)

(2, 3
2
)–(3, 1

2
) eigenfunction from the linear analysis at A = 0.04 was therefore added as

a small perturbation (amplitude = O(10−4)) to the saturated state (the code truncation
being necessarily expanded from (M,L) = (4, 4) to (4, 8) to accommodate the half-
wavelength disturbance). Figure 9 confirms that the disturbance magnifies in time with
a growth rate 2.9× 10−3 remarkably close to the theoretical prediction of 3.6× 10−3

based upon an isolated inertial wave basic state.
A power spectrum of the time series data for the growing disturbance in figure 10

indicates three clear peaks. The highest located at a frequency of 2.76 corresponds
to the dominant ‘triad’ instability (2, 3

2
)–(3, 1

2
). The lower peak at a frequency of 2.27

coincides with a second ‘triad’ instability consisting of the modes (2, 1
2
) and (3, 3

2
) which

has just become unstable at A = 0.04 (frequency 2.28 and growth rate 1.0× 10−3; see
also figures 5 and 6 of Kerswell (1999) where this instability appears with frequencies
2.32 and 2.35 at E = 10−4 and 10−5 respectively). The third is at a frequency of 1.04
and since it consists of the two modes (m, l) = (0, 3

2
) and (2, 3

2
) growing together cannot

be a triad with the underlying inertial mode. This frequency, in fact, corresponds to
the m = (0, 2) elliptical instability whose resonant geometry for 3

2
axial wavelengths

is d = 3
2
× 2.7009 = 4.0514 and therefore relatively close to d = 3.9796. Although

the first thought is that the finite-amplitude m = (−1, 1) saturated state must ‘tune
in’ the m = (0, 2) instability, the reality is that the Ekman number is large enough
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Figure 11. A plot of βcrit against E for the m = (−1, 1) (solid line) and m = (0, 2) (dotted line)
instabilities at d = 3.9796. For E 6 1.9 × 10−4 the m = (−1, 1) instability appears before the
m = (0, 2) instability as it must do eventually in the inviscid limit E → 0.

at E = 2.5 × 10−4 to smear out and shift the instability window around d = 4.0514
for the m = (0, 2) elliptical instability to include d = 3.9796. In fact, a combination
of viscous tuning for the m = (0, 2) elliptical instability and viscous detuning for the
m = (−1, 1) instability means that the former actually has a marginally larger growth
rate at 2.96× 10−3 than the latter’s 2.66× 10−3! Figure 11 shows that this is purely a
result of the Ekman number being relatively large. As soon as the Ekman number is
below about 1.9× 10−4, and experiments have typically E = 5× 10−5, the m = (−1, 1)
instability reinstates itself as the first and presumably preferred instability.

At β = 0.034, the secondary instability is too strong to show any signs of equilibrat-
ing before the amplitude of the flow solution becomes too large and the code breaks
down. However, an analogous run at β = 0.033 indicates that a new ‘secondary’
saturated state could be reached. Figure 12 shows the initial exponential growth of
the secondary instability arresting at about n ≈ 1100 before the m = (0, 2) elliptical
instability apparently takes over and eventually causes the code to blow up. A plot of
the main modal amplitudes as a function of time in figure 13 confirms this interpreta-
tion. The seeded (2, 3

2
)–(3, 1

2
) secondary instability has the stronger initial growth but

appears to saturate at a low level (notice the corresponding decrease in the primary
(1, 1) modal strength). Eventually the m = (0, 2) elliptical instability establishes itself
once the (0, 3

2
) mode has grown to a sufficient amplitude and then the (0, 3

2
) and (2, 3

2
)

modes grow together until the code breaks down. This strongly suggests that for con-
ditions under which the m = (0, 2) instability is not coincidentally excited (e.g. smaller
E), secondary saturation of the (2, 3

2
)–(3, 1

2
) triad instability would be achieved. This
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Figure 12. The effect of adding the unstable (2, 3
2
)–(3, 1

2
) eigenfunction as a small perturbation to

the saturated m = (−1, 1) state for β = 0.033 at E = 2.5× 10−4 (point of addition indicated by the
vertical dotted line). The code truncation is (N,M,L) = (90, 4, 8) and ∆t = 0.05. Only the amplitude
envelope of ωx is shown to avoid solid black filling due to the rapid oscillations compared to the
growth timescale. The data shown are again limited by the code breaking down.

secondary Hopf bifurcation therefore appears supercritical as well. Figure 14 shows
that considerable nonlinear mixing has occurred by the time the code breaks down.
The same primary frequencies are present as in figure 10 but now combinations have
become established. Figure 15(a–c) gives some idea of how complicated the flow has
become just before code breakdown in figure 12.

With the instability of the final m = (−1, 1) saturated state established, the next
logical step was to investigate how the m = (−1, 1) instability reacts to the perturbation
being added at an earlier stage of its evolution. A run was performed in which
the (2, 3

2
)–(3, 1

2
) eigenfunction (calculated at A = 0.04) was added to the growing

m = (−1, 1) instability when its amplitude was A = 0.002 (β = 0.034). A plot of
ωx(

1
2
, 0, 1

4
d) over time (figure 16) clearly shows the steadily growing m = (−1, 1) state

carrying a smaller oscillatory instability. The frequency of this signal is evidently
different from the initial perturbation’s 2.76 added at n = 200. A power spectrum of
the time series shown in figure 17 confirms that the dominant signal is due to the
m = (0, 2) elliptical instability of frequency λ = 1.04. A modal amplitude verses time
plot (figure 18) gives the complete dynamical picture of the evolution showing that
the elliptical instability m = (0, 2) actually grows right from the start. The (3, 1

2
) mode

initially decays until the (1, 1) mode has reached sufficient amplitude to sustain the
(2, 3

2
)–(3, 1

2
) triad instability at about n = 270. This critical amplitude is lower than

would normally be the case because energy is already being fed into the (2, 3
2
) mode
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Figure 13. A plot of the main modal amplitudes against time for the run shown in figure 12
(β = 0.033, E = 2.5 × 10−4). The labels are in the form (m, l) so, for example, (1, 1) represents
one half of the primary m = (−1, 1) elliptical instability ((−1,−1) is the other). The modes (2, 3

2
)

and (3, 1
2
) clearly grow together initially and appear to saturate. Ultimately, however, the elliptical

instability modes (0, 3
2
) and (2, 3

2
) disrupt this secondary saturation.

through the elliptical mechanism. This aside, it is clear that at lower Ekman numbers
where the m = (0, 2) elliptical instability would not be excited concurrently, the
secondary instability would manifest itself as predicted by quasi-static linear analysis
of the underlying (1, 1) inertial mode (Kerswell 1999).

Secondary instability in the m = (0, 2) case unfortunately could not be found with
E > 2.5×10−4 because the amplitude of the saturated states captured numerically were
presumably too small. This was a direct result of the increased numerical difficulty in
accurately tracking an oscillatory instability. The smaller time step (∆t = 0.025) and
larger radial truncation (N = 120) required invariably caused the code to blow up at
smaller disturbance amplitudes than in the m = (−1, 1) case.

5. Discussion
A number of new results have been established in this paper. First, Waleffe’s (1989)

linear stability analysis for flow within a rotating elliptically distorted cylinder valid
in the joint limit of vanishing elliptical distortion and Ekman number (β, E → 0) has
been confirmed and extended to finite β and E through a two-dimensional eigenvalue
code. Secondly, the nonlinear evolutions of two elliptical instabilities, the subharmonic
case m = (−1, 1) and a more generic example m = (0, 2), have been numerically
simulated using a new Navier–Stokes solver in a non-orthogonal elliptico-polar
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Figure 14. A power spectrum for the run shown in figure 12 based upon ωx data beyond the dotted
vertical line. The flow appears more complicated than in figure 10 but this is because nonlinear
mixing is more evident. The base frequencies are, however, the same.

coordinate system. Using appropriately restricted truncations, (primary) saturated
endstates have been found in both cases consistent with supercritical bifurcation.
A rather delicate weakly nonlinear analysis for the m = (−1, 1) instability (with
stress-free horizontal boundary conditions) has been developed and shown to capture
the main features of the numerical solutions obtained. This analysis has highlighted
the existence of an intricate saturation mechanism where a phase-shifting process
operates alongside the more usual frequency-detuning and damping processes. Thirdly,
the stability of both saturated states has been studied by examining the temporal
evolution of flow perturbations. The m = (−1, 1) saturated state has been shown to be
linearly unstable at amplitudes consistent with a quasi-static stability analysis of the
dominant inertial mode present (Kerswell 1999). Strong evidence has been presented
(figure 13) to indicate that this secondary Hopf bifurcation is also supercritical
since the secondary instability appears to saturate at a low level leading to a new
possibly quasi-periodic state. However the presence of another elliptical instability
(coincidentally the m = (0, 2) instability), also excited at d = 3.9796 due to the
comparatively large value of E = 2.5 × 10−4, ultimately disrupts this (secondary)
state leading to quite complicated nonlinear behaviour. For the restricted parameter
settings which could be handled by the numerical code, the m = (0, 2) saturated state
appeared to be stable.

The numerical model considered here differs in one important aspect from the
actual experimental set up: the horizontal boundary conditions. Previous numerical
work (Kerswell & Barenghi 1995) directed at predicting when the (primary) elliptical
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(c)

Figure 15. The velocity field just before the code breaks down in figure 12 at n = 1325. (a) The same
meridional slice as in figure 7(a). The contours indicate azimuthmal velocity and arrows meridional
velocity of the total flow (the longest arrow corresponds to a speed 0.0362). (b) A slice across the
top (z = d) of the cylinder showing the horizontal velocities associated with the disturbance (the
longest arrow corresponds to a speed of 0.1120). (c) A slice across the centre (z = d/2) of the
cylinder showing the horizontal velocities (arrows) and axial velocity (contours) associated with
the disturbance (the longest arrow corresponds to a speed of 0.0847).

instability should emerge in Malkus’s (1989) experiments has produced good quan-
titative agreement with observations (Malkus, private communication). However, the
computational overhead incurred by working with realistic non-slip boundary con-
ditions on all surfaces at present prevents any further progress beyond this modest
starting point. The use of stress-free boundary conditions on the top and bottom
cylinder surfaces is absolutely crucial in making the numerics attempted here feasible.
This simplification is, in fact, not as dramatic as it first appears. The viscous damping
experienced by inertial waves is certainly reduced but only by a fractional amount.
The viscous decay rates remain asymptotically O(E1/2) due to the sidewall Ekman
layers: what is missing is the contribution from the horizontal Ekman layers which
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Figure 16. A plot of ωx(0.5, 0, d/4) against the number of revolutions for β = 0.034, E = 2.5× 10−4

and d = 3.9796, (N,M,L) = (90, 4, 8) and ∆t = 0.05. The (2, 3
2
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2
) eigenfunction is added as

a small perturbation after 200 revolutions (indicated by the vertical dotted line) but is quickly
overpowered by the growing m = (0, 2) elliptical instability.

is of the same order. The dynamics of the mean flow, however, appear at first fun-
damentally different since its horizontal Ekman boundary layers are the dominating
influence. What the weakly nonlinear analysis shows is that the loss of these layers
is also accompanied by a cancellation of the leading-order nonlinear driving terms
for the mean flow. Ultimately, this means that the mean flow is driven at the same
order as the non-slip case but through a completely different process. The net result
of all this is that we can reasonably expect only quantitative differences between the
numerical predictions obtained here and laboratory observations: qualitatively, the
two should be equivalent. This is especially true for the secondary instability findings
which result from an inviscid triad mechanism: viscous boundary layers act only to
determine when the instability occurs not if.

The main significance of this work is to provide concrete support for the general
hypothesis that inertial waves are generically unstable (Kerswell 1999, see also Lif-
schitz & Fabijonas 1996 and Fabijonas, Holm & Lifschitz 1997 who consider the
unbounded Kelvin wave analogues). This has obvious implications for all perturbed
rapidly rotating flows in which inertial waves appear either through bifurcation or
direct forcing. Here we have focused upon elliptical distortion as our perturbation
(see also Aldridge et al. 1997; Kerswell & Malkus 1998) but many other physically
interesting examples exist such as precession (Malkus 1968; Kerswell 1993; Vanyo
et al. 1995; Kobine 1995, 1996) and rotation speed modulation (Aldridge & Toomre
1969; Tilgner 1999).
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Figure 17. A power spectrum of the ωx time series data shown in figure 16. The modulus of the
coefficients ω̂x in the Fourier series of ωx for n > 200 are plotted (on a log10 scale) against the
corresponding frequency λ. This plot clearly indicates the dominance of the m = (0, 2) elliptical
instability. (The fact that the time series for ωx is not stationary but evolving secularly leads to
broadening of the frequency peaks.)

Beyond this secondary instability, experimental observations seem to show a rapid
breakdown to small-scale disorder. This is consistent with the Ruelle–Takens scenario
(Ruelle & Takens 1971) in which, as successive bifurcations add new frequencies to
the dynamics, the resultant degree-n quasi-periodic motion gives way to a strange
attractor at some n > 3 (Newhouse, Ruelle & Takens 1978). For the current dynamical
system as well as other inertial wave systems, this transition appears to occur earlier,
maybe even at the tertiary bifurcation, rather than later. Establishing this numerically
is at present beyond reach but is feasible experimentally through time series data
analysis (e.g. Gollub & Swinney 1975; Gollub & Benson 1980, and see figure 14 of
Kobine 1995). Hopefully, this prospect will help stimulate new experimental studies
specifically designed to extract such quantitative data.

The authors gratefully acknowledge the support of The Royal Society and EPSRC
through an earmarked studentship for D.M.M. This work has also benefitted from
the valuable experimental input of Professor W. V. R. Malkus.

Appendix. Weakly nonlinear analysis for the (−1,1) elliptical instability
The purpose of the weakly nonlinear analysis presented below is to identify an

asymptotic relationship between the value of the applied elliptical distortion β, the
saturated amplitude ε and the phase ψ of the primary excited inertial wave at a given
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Figure 18. A modal amplitude plot against time for the evolution shown in figure 16. This clearly
shows the m = (0, 2) elliptical instability growing right from the start and the secondary instability
initially decaying before finally growing once the underlying inertial wave hadreached a threshold
amplitude.

Ekman number E. In doing so, we will find that no mean flow is generated at the
leading order of O(ε2/E1/2). We work in the rotating frame and develop asymptotic
expansions for the velocity field u, the elliptical distortion β and the phase ψ in terms
of ε. If the velocity field of the primary inertial wave is represented as Q, then by
definition

ε :=
|〈Q, u〉|
|〈Q,Q〉| :=

∣∣∣∣∫∫∫ Q∗ · u dV

∣∣∣∣ ∣∣∣∣∫∫∫ |Q|2 dV

∣∣∣∣−1

(A 1)

and we work with amplitude expansions

β = βcrit(E) + ε2β2(E) + · · · ,
A = A0(E) + ε2A2(E) + · · · = ei(t+ψ(E,ε)) = ei(t+ψ0(E)+ε2ψ2(E)+···),

}
(A 2)

where A is the phase function for the primary inertial wave and the O(ε) terms vanish
in both cases because 〈Q,Q · ∇Q〉 = 0. Each expansion term can be further expanded
as a series in E1/2. For example, we will see below that

βcrit = β0(E)E1/2 = β01E
1/2 + β02E + · · · , (A 3)

ψ0 = ψ00 + ψ01E
1/2 + · · · . (A 4)

The expansions for β2 and ψ2 can technically start at O(E−1/2) and O(E−1) respectively
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so that

β2 = β2−1E
−1/2 + β20 + · · · , (A 5)

ψ2 = ψ2−2E
−1 + ψ2−1E

−1/2 + ψ20 + · · · (A 6)

(βln is associated with O(εlEn/2)). The velocity field is expanded in the two small
parameters ε and E1/2 in the form

u = ε
[
Au101 + E1/2

(
Auv111 + β0e

2itA∗ue111 + β0e
2itAue113

)
+E

(
Auvv121 + β0e

2itA∗uev121 + β2
0Au

ee
121 + · · ·)+ · · · ]

+ε2
[(
v0(s)E

−1/2 + v1(s) + · · · )φ̂+ |A|2u200 + A2u202 + · · ·+ Eu220 + · · · ]
+ε3

[
u3−11E

−1/2 + u301 + · · · ] · · ·+ c.c. (A 7)

We will establish that the leading mean flow v0(s)φ̂ vanishes so that, in fact,
β2−1 = ψ2−2 = 0. The notation used throughout is that the velocity field ulnm occurs
at O(εlEn/2) and has azimuthal wavenumber m, so in particular u101 =Q. The super-
scripts, e and v, are used to help distinguish between flows generated by ellipticity or
viscous effects. For example, the flow fields uv111 and uvv121 represent first- and second-
order viscous corrections to the primary inertial wave in a cylinder. The flows ue111 and
ue113 represent the first-order elliptical corrections, and uee121 the relevant part of the
second. The flow uev121 is generated both as the leading viscous correction of ue111 and
as the leading elliptical correction to uv111. There is no a priori assumption of relative
scaling between ε and E1/2. The physical processes associated with these parameters
are very different and are left to organise the expansion. At the order to which we
work, it is sufficient to consider the equation

∂u

∂t
+ 2k̂×u+ u · ∇u+ ∇p = 1

2
β
[
e2i(φ+t)N∇p+ e−2i(φ+t)N∗∇p]+ E∇2u (A 8)

(where N is defined in (4.2)) and all operators can be taken as the usual ones in
cylindrical coordinates. In other words, we need only retain the ‘ellipticity’ in the
pressure term and neglect it in the viscous diffusion term. (In deriving (A 8) from
(2.18)–(2.20), we have also rescaled as follows:

[w, z, p]→ [
√

1− β2w,
√

1− β2z, (1− β2)p],

although since β2 = O(E) this is not important in what follows.)† The weakly non-
linear analysis presented below is centred upon the determination of four solvability
conditions. The threshold elliptical distortion, βcrit, is obtained via the solvability

condition at O(εE1/2). The O(ε2/E1/2) and O(ε2) mean flows, v0φ̂ and v1φ̂, emerge
through solvability conditions at O(ε2E1/2) and O(ε2E) (the former vanishing iden-
tically) and the key saturation parameters β2 and ψ2 are obtained by applying a
solvability condition at O(ε3).

A.1. O(ε): inertial wave problem

The leading-order problem is merely the Poincaré eigenproblem for the primary
inertial wave. In the regime of interest (smallest β0), the inertial wave frequency, λ,

† Technically, the one place that this rescaling does raise its head is in producing an extra term
−∇p101 on the right-hand side of equation (A 21). However this is harmlessly absorbed into ∇pee121

and can be suppressed.
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must be tuned to be within O(E1/2) of 1 for linear instability to occur. Thus taking
λ = 1 + O(E1/2), the O(ε) problem is

iu101 + 2k̂×u101 + ∇p101 = 0 (A 9)

with ∇ · u101 = 0 and u101 · n̂ = 0 on s = 1. The inertial wave solution is

u101 =

 iu0(s) cos αz
v0(s) cos αz

iw0(s) sin αz

eiφ :=
eiφ

2(4− λ2)

 i{(2 + λ)J0(ks) + (2− λ)J2(ks)} cos αz

−{(2 + λ)J0(ks)− (2− λ)J2(ks)} cos αz

2iλk
α J1(ks) sin αz

 ,
(A 10)

p101 = −J1(ks)

k
cos αz eiφ (A 11)

with the dispersion relation

k2

α2
=

4− λ2

λ2

and eigencondition

(2 + λ)J0(k) + (2− λ)J2(k) = 0. (A 12)

The cylinder height-to-radius ratio d = 3.9796 gives a solution of (A 12) with λ = 1,
radial wavenumber k = 2.7346 and α = 2π/d so that a complete wavelength is
contained with the cylinder.

A.2. O(εE1/2): leading elliptical and viscous corrections

Both the ellipticity and the viscosity contribute to the O(εE1/2) balance. The eiφ

component is

∂

∂t

[
β0A

∗
0e

2itue111 + A0u
v
111

]
+ 2k̂× [β0A

∗
0e

2itue111 + A0u
v
111

]
+ ∇ [β0A

∗
0e

2itpe111 + A0p
v
111

]
= 1

2
β0A

∗
0e

2i(φ+t)N∇p∗101 − i(1− λ)
E1/2

A0u101 (A 13)

with ∇ · ue111 =∇ · uv111 = 0 and boundary conditions on s= 1, ue111 · n̂= 0 and uv111 · n̂ =
F1(u101) where F1(u101) is the (linear) Ekman pumping due to u101 (Greenspan 1968).
At this point, it is simpler to treat β0 (and ψ0) as a whole rather than splitting it into
its β01 and β02 parts and solving the same problem twice. The e3iφ component is

3iue113 + 2k̂×ue113 + ∇pe113 = 1
2
e2iφN∇p101 (A 14)

with ∇ · ue113 = 0 and ue113 · n̂ = 0 on s = 1. Constructing 〈u101, (A 13)〉 leads to a
complex solvability condition,

i(λ− 1) + E1/2s1 = −iβ0E
1/2C1e

−2iψ0 (A 15)

which correctly applied only at leading order gives

β0E
1/2C1 = β01E

1/2C1 =

√
∆2 + sR

2

1 E, (A 16)

and

tan 2ψ00 =
E1/2sR1

∆
with sin 2ψ00 = −sR1 /(β01C1) > 0, (A 17)
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where ∆ = λ+E1/2sI1− 1 is the frequency detuning (λ− 1 is the geometrical detuning
and E1/2sI1 the viscous detuning),

iC1 :=
〈u101,

1
2
e2iφN∇p∗101〉
〈u101, u101〉 =

9

16 + 8/(1 + k2)

∣∣∣∣
when λ=1

(A 18)

is the (first) elliptical coupling coefficient and

s1 = sR1 + isI1 :=

−
∮
p∗101F(u101) dS

〈u101, u101〉 =
−3(1 + i)(1 + α2)

2
√

2(1 + 2α2)

∣∣∣∣
when λ=1

(A 19)

is the (first) complex viscous frequency shift (Kerswell & Barenghi 1995, equation
(2.12)). The expression (A 16) gives the critical distortion in terms of the viscous
decay rate sR1 and detuning ∆ in the asymptotic limit E → 0. The interest here is more
on the control of viscosity rather than detuning so we have assumed ∆ = O(E1/2)
which explains our initial βcrit = O(E1/2) assumption. At perfect tuning, ∆ = 0, the
phase angle is π/4 indicating that the inertial mode ‘sits’ in the direction of maximal
vortex stretching (Waleffe 1990). The critical distortion is correspondingly minimized
at β0C1 = |sR1 | which underlines the fundamental balance achieved between ellipticity
and viscosity. (It is important when calculating the velocity fields uv111 and ue111 to
renormalize them so that 〈u101, u

e
111〉 = 〈u101, u

v
111〉 = 0. This enforces the definition of

ε.)

A.3. O(εE): secondary elliptical and viscous corrections

At this order, we must consider the second-order viscous correction uvv121, the second-
order elliptical correction uee121, and the hybrid second-order flow uev121. The respective
problems to be solved are as follows. The problem for uvv121 is

iuvv121 + 2k̂×uvv121 + ∇pvv121 = ∇2u101 − sv2u101 (A 20)

with ∇ · uvv121 = 0 and uvv121 · n̂ = F2(u101, u
v
111) on s = 1 where F2 is the second-

order (linear) Ekman pumping. The coefficient sv2 represents the second-order viscous
frequency shift present in the absence of ellipticity. The problem for uee121 is

iuee121 + 2k̂×uee121 + ∇pee121 = 1
2

[
e2iφN∇pe∗111 + e−2iφN∗∇pe113

]− iC2u101 (A 21)

with ∇ · uee121 = 0 and uee121 · n̂ = 0 on s = 1. The coefficient β2
0C2 is the second-order

elliptical coupling coefficient. The problem for uev121 is

iuev121 + 2k̂×uev121 + ∇pev121 = 1
2
e2iφN∇pv∗111 − se2u101 (A 22)

with ∇ · uev121 = 0 and uev121 = F1(u
e
111) on s = 1. Here β0s

e
2 is the second-order viscous

frequency shift to u101 due to the first-order viscous correction to the elliptical flow
ue111 and the elliptical correction to the viscous flow uv111. These coefficients mean that
the higher-order version of (A 15) is

i(λ− 1) + E1/2s1 + iβ0E
1/2C1e

−2iψ0 = −E (sv2 + β0s
e
2e
−2iψ0 + iβ2

0C2

)
. (A 23)

For the situation studied in the main text, we have λ = 1, and the coefficients

s1 = −0.618933(1 + i), C1 = 0.531174, sv2 = −10.3212,

se2 = −0.0886034 + 0.069463i, C2 = 0.171714.
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Since E = 2.5 × 10−4 is relatively large, the leading-order asymptotic predictions of
βcrit = 0.0261 and ψ0 = −0.875π are a little distant from the numerical values of
βcrit = 0.0299 and ψ0 = −0.8595π. A next-order calculation using (A 23) produces
much closer values,

βcrit = 0.0295, ψ0 = −0.855π. (A 24)

A.4. O(ε2): nonlinear corrections

The leading nonlinear corrections u200 and u202 are defined by the inhomogeneous
system at O(ε2) forced by the quadratic nonlinearity of the Navier–Stokes equation.
The problems are

∂u200

∂t
+ 2k̂×u200 + ∇p200 = −u101 · ∇u∗101 − u∗101 · ∇u101, (A 25)

∂u202

∂t
+ 2k̂×u202 + ∇p202 = −u101 · ∇u101, (A 26)

with ∇ · u200 = ∇ · u202 = 0 and u200 · n̂ = u202 · n̂ = 0 on s = 1. The solutions are

u202 =

 iu202(s)
v202(s)

0

 e2iφ :=
1

9s

 iJ2
1 (ks)− is2J2

1 (k)

s2J2
1 (k)− sJ1(ks)

dJ1(ks)
ds

0

 e2iφ

p202 = − 1
3
J2

1 (ks)e2iφ − 1
2
u2

101, (A 27)

u200 = v200(s) cos 2αzφ̂ :=
1

9s

{
J2

2 (ks)− 3J2
1 (ks)

}
cos 2αzφ̂,

p200 = 1
18

{
9J2

0 (ks)− J2
2 (ks)

}
cos 2αz − u101 · u∗101. (A 28)

No mean flow is directly generated at this order in keeping with the well-known
general result that the interaction of any two inertial waves cannot drive geostrophic
flows (Greenspan 1969).

A.5. Calculation of mean flow

Mean flow can first appear at O(ε2E1/2) in the momentum equation driven by
the nonlinear interactions of u101 with uv111 and ue111 together with an ‘elliptical’
contribution from the pressure p202. In a cylinder with rigid lid and bottom, these
nonlinear terms would be balanced by horizontal Ekman layers corresponding to an
O(ε2) mean flow. In an infinite cylinder, only the weak internal friction of the mean
flow acts as a balancing agency and as a result an O(ε2/E1/2) flow can be driven.
Letting v0(s) = |A|2g0(s) + β0A

2e−2ith0(s) + β0A
∗2e2ith∗0(s), we have the problems

1

2πd

∫ d

0

∫ 2π

0

φ̂ · (u101 · ∇uv∗111 + uv∗111 · ∇u101 + c.c.
)
dφ dz =

(
∇2 − 1

s2

)
g0,

1

2πd

∫ d

0

∫ 2π

0

φ̂ · (u101 · ∇ue∗111 + ue∗111 · ∇u101 − 1
2
e−2iφN∗∇p202

)
dφ dz =

(
∇2 − 1

s2

)
h0,

to be solved subject to the homogeneous boundary conditions g0(0) = h0(0) = g0(1) =
h0(1) = 0.

At next order O(ε2), we look for a solution of similar form v1 = |A|2g1(s) +
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β0A
2e−2ith1(s) + β0A

∗2e2ith∗1(s). The calculation of g1(s) involves solving

1

2πd

∫ d

0

∫ 2π

0

φ̂ · [ u101 · ∇uvv∗121 + uvv∗121 · ∇u101 + uv111 · ∇uv∗111 + c.c. ] dφ dz

(
∇2 − 1

s2

)
g1.

(A 29)

The boundary condition on g1 at the sidewall is modified by a boundary layer in
which u101 interacts with its boundary correction ũ101 over a distance of O(E1/2) from
s = 1. Solving the boundary layer problem,

1

2πd

∫ d

0

∫ 2π

0

φ̂ · [ u101 · ∇ũ101 + ũ101 · ∇u101 + ũ101 · ∇ũ∗101 + c.c. ] dφ dz =
∂2

∂ξ2
g̃1, (A 30)

where ξ is the stretched boundary layer variable (1−s)/E1/2 and g̃1(ξ) is the boundary
correction to g1(s), leads to the modified boundary condition

g1(1) = − 3
2
v0(v0 + αw0)|s=1

(see (A 10) for definitions of v0 and w0) along with g1(0) = 0. Due to phase coherence,
nonlinear interactions between pure elliptical flows vanish identically, i.e.

1

2πd

∫ d

0

∫ 2π

0

φ̂ · [ u101 · ∇uee∗121 + uee∗121 · ∇u101 + ue111 · ∇ue∗111 + ue113 · ∇ue∗113 + c.c. ] dφ dz = 0

which just leaves a straightforward calculation for h1(s):

1

2πd

∫ d

0

∫ 2π

0

φ̂ · [ u101 · ∇uev∗121 + uev∗121 · ∇u101 + uv111 · ∇ue∗111

+ue∗111 · ∇uv111 ] dφ dz =

(
∇2 − 1

s2

)
h1 (A 31)

where h1(0) = h1(1) = 0.

A.6. Saturation

With an O(ε2/E1/2) mean flow the leading saturation balance is potentially derived
by the solvability condition on the O(ε3/E1/2) momentum equation for u3−11. This
gives

i(β2A
∗
0 + β0E

1/2A∗2)C1e
2it + [i(λ− 1) + s1E

1/2]A2 = − 1

E1/2
N(u101, v0φ̂) (A 32)

where we define

N(u, v) :=
〈u101, u×∇×v + v×∇×u〉

〈u101, u101〉 . (A 33)

The right-hand side is

−A|A|2N(u101, g0φ̂)− β0A
[
A2e−2itN(u101, h0φ̂) + A∗2e2itN(u101, h

∗
0φ̂)
]

which reduces to

−A[σ1 + 2iβ0σ2 sin 2ψ0

]
,

where N(u101, g0φ̂) = σ1 = 1.010 × 10−2i and N(u101, h0φ̂) = −N(u101, h
∗
0φ̂) = σ2 =

−4.334 × 10−3. Substituting in the leading result, sin 2ψ0 = −sR1 /(β0C1), causes this
whole expression to vanish identically so that the mean flow, v0, is strictly zero at this
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Figure 19. A comparison of the mean flow at saturation (β = 0.031, E = 2.5 × 10−4, d = 3.9796)
for the m = (−1, 1) elliptical instability obtained from the numerics (solid line) and the weakly
nonlinear prediction (dashed) using ε = 0.06613 and ψ0 = 0.855π (plotted against radius s).

order. This is a non-trivial result which in its ‘simplest form’

φ̂ · {−iu101×∇×[e−2iφN∗∇p101

]−N∗∇p202

} ≡ 0 (A 34)

in our non-orthogonal elliptico-polar coordinates, means that, in fact, h0(s) =
−iC1/(2s

R
1 ) × g0(s). In terms of β2 and ψ2, the leading coefficients β2−1 and ψ2−2

vanish so that we must determine β20 and ψ2−1 at next order to capture saturation.
The solvability condition on the O(ε3) equation for u301 is

i(β2A
∗
0 + β0E

1/2A∗2)C1e
2it + i(λ− 1)A2 + s1E

1/2A2 = −N(u, u), (A 35)

where A2 = iψ2e
i(t+ψ0) so that this represents a complex equation for β20 and ψ2−1.

The right-hand side of (A 35) reduces to

N(u, u) =
A0

E1/2

[
σ1 + 2iβ0σ2 sin 2ψ0

]
+ A0|A0|2{σ3 + σ4 + σ5}

+β0A
3
0e
−2itσ6 − β0A

∗
0|A0|2e2itσ∗6 , (A 36)

where σi ∈ C are defined as follows:

N(u∗101, u202) = σ3 = 5.685× 10−2i,

N(u101, u200) = σ4 = −8.679× 10−2i,

N(u101, g1φ̂) = σ5 = 5.717× 10−3i,

−N(u101, h
∗
1φ̂)∗ = N(u101, h1φ̂) = σ6 = 4.026× 10−3 − 3.870× 10−3i

and the first term on the right is carried over from the previous order. The left-hand
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side of (A 35) can be simplified using the leading-order balance (A 15) to give

2β0C1ψ2−1 + iβ20 = − e2iψ0

E1/2

[
σ1 + 2iβ0σ2 sin 2ψ0

]− e2iψ0
{
σ3 + σ4 + σ5

}
−β0e

4iψ0σ6 + β0σ
∗
6 (A 37)

and ultimately

β20 = 0.2272, ψ2−1 = −0.0760. (A 38)

The bifurcation is therefore a supercritical pitchfork bifurcation which is confirmed
by the numerical computations. To compare the theoretical predictions (A 38) with
the numerics, we take the numerically calculated critical values of 0.0299 for βcrit and
−0.8595π for ψ0 to produce figure 8. This eliminates the discrepancy in the critical
point prediction which arises through E1/2 being relatively large and instead focuses
attention on the ε expansion procedure. Figure 19 shows that the predicted mean flow
matches the numerical solution well except, of course, for the boundary layer which
is suppressed in the weakly nonlinear theory. Since the mean flow only emerges at
second order, it is very sensitive to the phase angle ψ because of the delicate leading
balance which exists. Taking ψ0 = −0.853π rather than the asymptotic value −0.855π
actually used in figure 19 causes the theoretical and numerical mean flows to lie on
top of each other for much of the interior.
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